Process Academic Papers for LLM


I want to parse my PDF files as text chunks to build a RAG chatbot.

This notebook is my experments on getting corpus from my zebrafish paper in PDF format.

PDF Chunk Decision

I explored a bit and I find these practices good.

  • Use unstructured (local open source part) to analyse the PDF files.
  • install onnxruntime-gpu to run yolox on GPU.
  • For academic, only keep two kinds of elements:
    • FigureCaption
    • NarrativeText
  • Use LLM to judge if the NarrativeText is from the main text.
from time import time
from pprint import pprint

import numpy as np
from pdf2image import convert_from_path
import matplotlib.pyplot as plt

import unstructured
from unstructured.partition.pdf import partition_pdf_or_image, partition_pdf

Partitioning PDF with Unstructured

path = "paper.pdf"

t0 = time()
elements = partition_pdf(
    path,
    strategy='hi_res',
    hi_res_model_name='yolox',
    infer_table_structure=True,
)
print(f"Spend {time() - t0:.2f} seconds")
Some weights of the model checkpoint at microsoft/table-transformer-structure-recognition were not used when initializing TableTransformerForObjectDetection: ['model.backbone.conv_encoder.model.layer2.0.downsample.1.num_batches_tracked', 'model.backbone.conv_encoder.model.layer3.0.downsample.1.num_batches_tracked', 'model.backbone.conv_encoder.model.layer4.0.downsample.1.num_batches_tracked']
- This IS expected if you are initializing TableTransformerForObjectDetection from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
- This IS NOT expected if you are initializing TableTransformerForObjectDetection from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
Spend 77.82 seconds

Element Data Structure

pprint(elements[17].to_dict())
{'element_id': '5f91180c98bc5344bf0214f28e7078ad',
 'metadata': {'coordinates': {'layout_height': 2200,
                              'layout_width': 1700,
                              'points': ((100.00151463888895,
                                          1380.263916015625),
                                         (100.00151463888895,
                                          1588.0814208984375),
                                         (525.0686645507812,
                                          1588.0814208984375),
                                         (525.0686645507812,
                                          1380.263916015625)),
                              'system': 'PixelSpace'},
              'detection_class_prob': 0.9351282715797424,
              'filename': 'paper.pdf',
              'filetype': 'application/pdf',
              'languages': ['eng'],
              'last_modified': '2024-09-02T22:39:54',
              'page_number': 1,
              'parent_id': 'e2289bf47a0b01a83f53ba0ba6e4d8bf'},
 'text': 'Peer Review History: PLOS recognizes the benefits of transparency in '
         'the peer review process; therefore, we enable the publication of all '
         'of the content of peer review and author responses alongside final, '
         'published articles. The editorial history of this article is '
         'available here: https://doi.org/10.1371/journal.pcbi.1009394',
 'type': 'NarrativeText'}

Element Categories

set([el.category for el in elements])
{'FigureCaption',
 'Formula',
 'Header',
 'Image',
 'ListItem',
 'NarrativeText',
 'Table',
 'Title',
 'UncategorizedText'}

Visualising the Layout

page = 1

images = convert_from_path(path)
p0 = np.array(images[page - 1])
plt.figure(figsize=(8, 14))

for i, el in enumerate(elements):
    if el.metadata.page_number == page:
        coord = el.metadata.coordinates.points
        rect = np.array(list(coord) + [coord[0]])
        if el.category == "Image":
            plt.plot(*rect.T, color="red", ls='-')
            plt.text(*rect[0], i, color="red")
        if el.category == "Title":
            plt.plot(*rect.T, color="green", ls='-')
            plt.text(*rect[0], i, color="green")
        if el.category == "Formula":
            plt.plot(*rect.T, color="navy", ls='-')
            plt.text(*rect[0], i, color="navy")
        if el.category == "Header":
            plt.plot(*rect.T, color="k", ls='-.')
            plt.text(*rect[0], i, color="k")
        if el.category == "FigureCaption":
            plt.plot(*rect.T, color="teal", ls='-')
            plt.text(*rect[0], i, color="teal")
        if el.category == "NarrativeText":
            plt.plot(*rect.T, color="pink", ls='-')
            plt.text(*rect[0], i, color="pink")
        if el.category == "UncategorizedText":
            plt.plot(*rect.T, color="k", ls='-')
            plt.text(*rect[0], i, color="k")

plt.imshow(p0)
plt.axis('off')
plt.show()

Figure Captions

The figure Captiosn detections are pretty good.

fig_captions = [el for el in elements if el.category == "FigureCaption"]
fig_captions_short = []
for fc in fig_captions:
    content = fc.to_dict()
    content['text'] = content['text'][:50]
    fig_captions_short.append(content)
    
pprint(fig_captions_short, depth=2)
[{'element_id': 'e674fd54a357f28918df3d96a918a520',
  'metadata': {...},
  'text': 'Fig 1. Experimental setup and overall spatial dist',
  'type': 'FigureCaption'},
 {'element_id': '886f8b103dd3640cbc6aca697fcd408e',
  'metadata': {...},
  'text': 'Fig 2. The behavioural quantities of 50 young zebr',
  'type': 'FigureCaption'},
 {'element_id': 'a88202b19a92ea77974c2fd46eefe591',
  'metadata': {...},
  'text': 'https://doi.org/10.1371/journal.pcbi.1009394.g002',
  'type': 'FigureCaption'},
 {'element_id': '3aa7ec78ebbfe167b26076dd6ad69688',
  'metadata': {...},
  'text': 'Table 1. A summary of the variables used to descri',
  'type': 'FigureCaption'},
 {'element_id': '1a70bfc2f7a763b90dcb24d8e5144c4a',
  'metadata': {...},
  'text': 'Fig 3. The states of Zebrafish characterised by tw',
  'type': 'FigureCaption'},
 {'element_id': '33d10e4c689bc8f73c39daefd14fe41f',
  'metadata': {...},
  'text': 'Fig 4. Single–parameter description of the Zebrafi',
  'type': 'FigureCaption'}]

Use LLM to Filter Chunks

The narrative text (pink) elements are wrong sometimes, including bits that are note from the main text of the paper.

We can use LLM to fix it.

import ollama

command = """\
Is the following text a part from a academic paper that discuss about science?
Or maybe it is something auxiliary about author, funding, reference, institution, addresses, etc?
Respond YES only if the text is from the main text part in a scientific journal article.
Respond NO if the text is about author information, funding sources, institution addresss.
Respond NO if the text is from the reference section.
Respond NO if the text is about data availability.
Respond NO if the text is about the article/letter category..
Respond NO if the text is a url link.
Respond NO if the text is about journal or publication detail like issues, volumes or page number.
Do not respond with anything other than YES NO.

---
{text}
---
"""

def check(text):
    response = ollama.chat(model='gemma2', messages=[
      {
        'role': 'user',
        'content': command.format(text=text)
      },
    ])
    return response['message']['content'].strip() == "YES"

The rectangular shapes with dashed lines are filted out by LLM.

page = 1

images = convert_from_path(path)
p0 = np.array(images[page - 1])
plt.figure(figsize=(10, 18))

for i, el in enumerate(elements):
    if el.metadata.page_number == page:
        coord = el.metadata.coordinates.points
        rect = np.array(list(coord) + [coord[0]])
        
        if el.category == "NarrativeText":
            if check(el.text):
                plt.plot(*rect.T, color="pink", ls='-')
                plt.text(*rect[0], i, color="pink")
            else:
                plt.plot(*rect.T, color="pink", ls='--')
                plt.text(*rect[0], i, color="pink")
plt.imshow(p0)
plt.axis('off')
plt.show()

Summarize a Paper

This is a little fun thing we can do:

  1. extract all text chunks from a paper and concatenate them.
  2. extract all figure captions
  3. ask an LLM to summarize it!
from tqdm import tqdm
from markdown2 import markdown
from IPython.core.display import HTML

corpus = ""
figure = ""
for i, el in tqdm(enumerate(elements)):
    if el.category == "NarrativeText":
        if check(el.text):
            corpus += el.text
    if el.category == "FigureCaption":
        figure += el.text + "\n"
403it [00:20, 20.03it/s] 

Paper Summary

command = """\
Please summarise the paper for me.

This is the main text:
---
{corpus}
---

These are the figure captions:
---
{figure}
---

Please generate your summary in the format of markdown note.
Do not include a title in your summary.
"""

summary = ollama.chat(model='gemma2', messages=[
  {
    'role': 'user',
    'content': command.format(corpus=corpus, figure=figure)
  },
])['message']['content'].strip()

HTML(markdown(summary))

This study investigates the collective behavior of zebrafish using a novel experimental setup and quantitative analysis. Zebrafish were tracked in a 3D tank, allowing researchers to measure various behavioral parameters like speed, orientation, and spatial distribution.

The authors observed distinct states in zebrafish behavior characterized by two length scales: nearest neighbor distance and persistence length. They found that higher persistence length (indicating stronger alignment) correlated with increased polarization of the group, meaning fish swam more cohesively.

Their findings suggest that zebrafish exhibit collective behavior similar to models like the Vicsek model, where individual interactions lead to emergent patterns. The researchers propose further studies using genetic modifications in zebrafish to investigate connections between their collective behavior and conditions like autism or physical alterations.

This research highlights zebrafish as a valuable model system for studying animal collective behavior and its potential links to various biological phenomena.

Chinese

command = """\
请帮我总结这一篇论文

文章的正文如下
---
{corpus}
---
文章的图片描述如下
---
{figure}
---

请简单描述文章的亮点,目的,实验方法,实验结果,以及结果的意义。
请用 markdown 格式呈现你的总结。除了专业词汇,请尽量使用中文。
不要在总结中添加题目或者章节标记。
"""

summary = ollama.chat(model='gemma2', messages=[
  {
    'role': 'user',
    'content': command.format(corpus=corpus, figure=figure)
  },
])['message']['content'].strip()

HTML(markdown(summary))

这篇论文主要研究斑马鱼群体行为的集体运动模式。

文章目的在于通过观察斑马鱼群体的运动轨迹,探究其行为状态和群体组织方式,并试图将其与数学模型相结合进行更深入的理解。

实验方法:作者使用三个摄像头记录50只斑马鱼在透明水槽中的运动轨迹,然后通过数据分析计算出斑马鱼群体的平均速度、方向和局部密度等特征参数。此外,他们还设计了相应的数学模型来模拟斑马鱼群体行为。

实验结果表明:斑马鱼的行为状态可以被两个长度尺度(最近邻居距离和持久长度)所描述,并且这些长度尺度与群体极化程度密切相关。作者发现,当持久长度增加时,群体极化程度也随之增强,而最近邻居距离减小。他们还发现,斑马鱼群体的运动模式可以与一种名为“惯性 Vicsek 模型”的数学模型相吻合。

结果意义:这项研究为理解斑马鱼群体行为提供了新的见解,并展示了将实验数据与数学模型相结合进行分析的有效方法。未来,这种方法可以应用于研究其他动物群体的集体运动模式,例如鸟类、昆虫和人类。此外,该研究也可以作为研究某些神经发育障碍,如自闭症的潜在参考模型。